E-COMMERCE
SALES ANALYSIS

Using PySpark & AWS

Geoff Nel
Rijul Banerjee
Min Young (Alice) Yang

Overview

As the world becomes more technologically advanced, companies are taking the route of
e-commerce retail businesses rather than leasing out real estate to build their merchandising
empires. E-commerce has developed vastly over the years, from CompuServe introducing the
world to its first e-commerce business in 1969 by utilizing dial-up connectivity to Paypal
pioneering the first e-commerce payment transaction system in 1998, following the boom of
online shopping platforms and changing the buying habits of consumers all over the world. With
shopping readily available to consumers at the tip of their fingers and the increase of online
competitions, businesses now face a new challenge of understanding the buying behaviors of
their customers, seasonal peaks, popularity amongst categories, and setting the right pricing trend
for their products.

Our objective is to analyze the habitual buying behavior of consumers during the months
of October, November, December, and January on an undisclosed online shopping platform. The
analysis will be done on purchase time, category popularity, brand trends, and pricing on event
types. Listed below is our project module.

Project Module
Phase Description Explanation Timeline
Phase 1 Dataset Assignment Assigning each member with a Week 1

dataset to analyze.

Phase 2 Data Exploration Members will explore their Week 2
assigned dataset to generate ideas
on what to analyze.

Phase 3 Data Pre-processing Cleaning the dataset to fit the Week 3
models,

Phase 4 Exploratory Data Analysis Generating visualization to Week 4-5
understand the story of the
business.

Phase 5 Data Combination Appending all datasets together. Week 6

Phase 6 Combined Data Analysis Analyzing the appended dataset Week 7

(Ensemble) with the models from subset data

to view the trends of each month.

Phase 7 Finalize Analysis Finalize ensemble analysis. Week 8

Phase 8 Present Findings Final Presentation Week 9

Collaboration Details

There were four separate datasets showing the purchasing behavior for the months of
October, November, December, and January. Each member of the team was assigned one
month’s data to explore and analyze independently. Geoff Nel took on the January dataset to
analyze the spending habits of customers on a time trend by parsing the date variables into day of
the week and time of the day. Rijul Banerjee was assigned the November dataset to explore the

changes of customer behavior as the holiday season approaches, while evaluating the price
distinction on views and purchases. Alice (Min Young) Yang was appointed the October dataset
to analyze the routine of customer viewing, carting, and purchasing behavior within a non-
holiday month while investigating the popularity of items within each category. With each
assignment, the members explored different methods to analyze their dataset by applying various
codes with different packages to later implement to an ensemble analysis of all the datasets
combined.

Data Description

The e-commerce data was found on Kaggle.com, originally consisting of two months of
information on a multi-category online store with 14 gigabytes of data. Additional data on
proceeding months were provided separately due to the limitation on file storage on the platform.
Each observation constituted an event associated with an event time, product ID, category ID,
category code, brand, price, user ID, and user session code. Each event shows the action taken by
the user, whether the product was viewed, placed into the cart, or purchased. The event time
stamped a date and hour for each event, while the product ID identifies the item that was viewed,
carted, or purchased. The category ID distinguishes each category in numeric codes and the
category code expressed the category in terms. The brand lists out the make of the products and
the prices show the value of each item. The user ID identifies each individual user and the user
session shows the period of each event during the user’s session on the e-commerce site.

e e R el R il R e Fommm - m - - - +----- e e m - - +
| event_time|event_type|product_id| category_id|category code| brand|price| user_id]| user_session|
R e LT T B it B il e e LT B T R +----- B B e T +
2020-01-01 @0:00:...	view	5809910	1602943681873052386	null	grattol	5.24	595414620	4adb70bb-edbd-498. ..
2020-01-01 @0:00:...	view	5812943	1487580012121948301	null	kinetics	3.97	595414640	c8c5205d-bed3-4f1. ..
2020-01-01 00:00:...	view	5798924	1783999068867920626	null	zinger	3.97	595412617	46a5010f-bd69-4fb. ..
2020-01-01 00:00:...	view	5793052	1487580005754995573	null	null	4.92	420652863	546f6af3-a517-475...
2020-01-01 @0:00:...]	view	5899926	2115334439910245200	null	null	3.92	484071203	cff70ddf-529e-4be...
e el L il R R o +----- LRl et R e e +

only showing top 5 rows

Data Statistics & Format

The four independent datasets: October, November, December, and January data,
contained 9 variables event_time, event_type, product id, category id, brand, price, user_id, and
user_sessions. There are 4 different data types: string, integer, long, and double. The Event_time,
event_type, category code, brand, user sessions were displayed as a string data type, while the
product_id and user_id were presented in integer data type, the category code was demonstrated
as long data, and price was shown as a double data type.

The October dataset had 42,448,764 observations with 5.3 gigabytes of file size, the
November dataset had 67,501,979 observations with 8.4 gigabytes of file size, the December
dataset is in an archive compressed file that had 67,542,878 observations with 2.7 gigabytes (9.1
GB uncompressed), and the January dataset had 55,967,041 observations with 2.2 gigabytes
(7.6GB uncompressed). After counting the total records within each month, we see that there is a
range between 42.4 to 67.5 million event impressions per month. October having the lowest total
events at 42.4 million, and January containing 56 million. Both November and December log a
total of 67 million total events for each month.

Total columns are: 9, Total columns are: g, Total columns are: @, Total columns are: 9,
Total records are: 42448764 Total records are: 67501379 rop3) records are: 67542878 Total records are: 55967841

The column names are: The column names are: The coluen names are: The column names are:
8 a a a
5} event_time @ event_time @ suent time @ event_time
1 event_type 1 event_type 1 event_type 1 event_type
2 product_id 2 product_id 2 product_id 2 product_id
3 category_id 3 category_id 3 category_id 3 category_id
4 category_code 4 category_code 4 catesory code 4 categery_code
1 brand = brand 5 " brand s brand
] price] price & price] pric_e
7 user_id 7 user_id 7 user_id 7 user_id
3 user_session & user_session 8 user_session 3 user_session

root

|-- event_time: string (nullable = true)
|-- event_type: string (nullable = true)
|-- product_id: integer (nullable = true)
|

|

|

|

|

I

- ¢ategory_id: long {nullable = true)
-- category_code: string (nullable = true)
- brand: string {nullable = true)
- price: double {nullable = true)
-- user_id: integer {nullable = true}
- user_session: string {nullable = true}

After exploring each dataset and the variable structures we examined all the months for
the null values, and we found that there were signs of data consistency issues. The months of
October and November both have roughly 30% of the data missing for the category code
column. In comparison, December, and January both have roughly 10% of the values missing for
the same column. This percentage accounts for a total of between 13 million to 21 million events

for the months of October and November, respectively.

December and January each have a relatively high total record count yet a lower total
missing record count within the category code column. These months are missing a total of 7
million and 5 million total values, respectively. Additionally, we do notice that there are missing
records for both brand and user session, although missing values within user session is not
considerable or significant. There is an average of about 13% missing data points in the brand
column across all months; the lower range for January is 11.7% and there is a high for October
0f14.4%. Upon this discovery, we found it more useful to keep the null values in respect of our
price and event type analysis.

By Month Null Value Count & Percent

OCTOBER
event_time $ event_type # product_id # category_id # category_code $ brand % price $ user_id $# user_session % Nl/lll
[1] [1] 1] [1] 13515609 6113008 (1} 1] 2
Cat Code - 31.8%
event_time # event_type # product_id # category_id # category_code # brand # price $ user_id $ wuser_session # Brand -]4 5%
0.0 0.0 0.0 0.0 31.84 14.4 0.0 0.0 0.0
NOVEMBER
Nu]] event_time & event_type % product_id + category_id # category_code # brand % price # user_id # user_session #
0 0 0 0 (1} 21898171 9218235 1} 0 10
Cat Code — 32.4%
Bl”a”ld - 13 7% event_time & event_type # product_id £ category_id # category_code # brand £ price # user_id # user_session %
0.0 0.0 0.0 0.0 3244 13.66 111} 0.0 0.0
DECEMBER

Null:

event_time ¢ event_type $ product_id # category_id # category_code $# brand # price $# user_id # user_session C(,lt Code _]0 5%

0 0 0 0 7058848 8115813 0 0 21

Brand — 12.0%

event_time $# event_type $ product_id $ category_id # category_code $ brand $# price £ user_id # user_session

0.0 0.0 0.0 0.0 10.5 12.02 0.0

JANUARY
Null: event_time + event_type # product_id # category_id # category_code # brand # price # user_id $ user_session %
o 0 0 0 5044890 6532738 0 0 19
Cat Code — 9.0%
0,
Brand -]] 67% event_time $ event_type £ product_id # category_id # category_code # brand £ price $ user_id $ user_session #

0.0 0.0 0.0 0.0 3.1 11.67 0.0 0.0 0.0

Data pre-processing

The datasets were presented in tabular form, but to perform a deep dive analysis on
event types the categorical variables need to be transposed into columns. There were three major
event types (view, cart, and purchase) to enhance the comprehension of the actions taken by
users during each month. After transposing the event types into columns, we then used the
groupby function to reduce the categories to understand the popularity of products in each
category. The count function was also used to tally the total of each category that was clicked on
by users to see which category gained highest interest among customers. The average price was
calculated to recognize fluctuations throughout the months to see the incline and decline of
prices in a given month. The event_time was transformed into a date format and parsed to
distinctly see the trends of user activity in hours per day and days per weeks cycles. Each step
was repeated for all the datasets to see the changes of consumer behavior as the month
proceeded.

Data Analysis

During our research on the e-commerce dataset, we analyzed the consumer behavior
during the four months by evaluating five core variables: time, event type, category, brand, and
price. We examined the time variable to understand the behavioral shifts among consumers as
time passed and noticed that in the month of January, there were major spikes in the total
purchase count, reaching a maximum of approximately 20,000 purchases as a cumulative for
both Saturday and Sunday. All other values for the month do seem normal otherwise. We further
see that Mondays and Sundays carry the most amount of purchases for December, while
Tuesdays were the best day in total purchase count for October, and Wednesdays in January.

The event type analysis showed a short consumer journey of viewing an item to checking
out to purchasing the item. We found that all four months had higher views than cart or purchase,
especially in the months of November and December. The results of the analysis concluded to be
that there are generally more views and purchases in November and December due to the holiday
seasons and sales; November is the month of Thanksgiving, followed by the biggest sale event of
the years - Black Friday, consumers are more likely to purchase items during this time of the
year due to the incentives of sale discounts applied. December is the month of Christmas, one of
the biggest holidays of giving and receiving gifts, therefore the purchase counts in this month are
ranked the highest among all others. The analysis also confirmed that during a non-holiday
season there are less view and purchases.

The category analysis displayed a high popularity in electronic goods, especially during
the month of November, which affirms our analysis on consumer incentive purchases. We see
that computers and electronics reaches a peak during November due to the exceptional Black
Friday event sales that go on during the month, which incentivizes consumers to make purchases
on items at a discounted rate and pay less for more value. We also saw a spike in sports good in
November and December, which concluded to be precisely around the time NFL and NBA
seasons begin to hype up. Construction good seemed to generate a high peak season around
December and January, which showed that many consumers tend to start fixing and/or
augmenting their properties during the New Years’ time.

Data Visualization and Explanation
1. Analysis on Time Variable
Below we can see that when we review the purchase count of each month by the hour of
the day, there are general trends. For instance, purchases are generally increasing between 3am
and 6am, while generally trending down after 6pm. We also notice that there are two peaks
within the hours of the day across each of the months. The first peak that we see is around 9am,
while the second is around 4pm.

By Month Review of Purchase Count by Hour of the Day
OCTOBER NOVEMBER

DECEMBER JANUARY

Description:

The above graphs illustrate the by month purchase count per hour of the day by weekday. The x-axis contains the
hour of the day, while the y-axis shows the count. The week is color coded Mon-Fri darkest-lightest.

By Month Review of Purchase Count & Average by Month Day
OCTOBER NOVEMBER

chases Per Day for the Month - Timeline - Sum

Pur:

JANUARY

hases Per Day for the Month - Timeline

pure
N
e
~.
R /

DECEMBER

Purchases per Day for the Month - Timeline - si

213 3515 16 0 W
Dy of the Month

3203 83

oo |
R R

aze= Per Day for the Manth - Timaline -

3
i
I
.. i
i

Description:

The above graphs illustrate the by month purchase count per day of the month. This is consolidated by both total
count and average. We have also included a row-wise heatmap of the purchase count and average by month in-

between each by-month-day graph in descending order. Finally, the average line per graph is also included.

In looking at the graphs above, we notice that each month has a general bi-monthly spike,
where there is one spike mid-month and another smaller spike at the end of the month. This does
not include October, which although it does have one mid-month spike, it also has several other
smaller spikes throughout the first half of the month. In looking at November, we see that there
is a mid-month spike in both overall purchases by count and on average by a factor of roughly

eight times. This very likely fits with our previously analyzed purchase count by day, where we
saw a major spike in purchase counts on a consecutive Saturday and Sunday in November.

In January, we also notice that purchases drop to the lowest of all the months. By the end
of December, we see that average purchases are hovering around 2000, while on the first day of
January we see that average purchases start from an average low of 900, which is the lowest of
the four months. For January, this is quickly reconciled in the following recorded day, where we
see a spike up to 1400, with a continuing average of 1200 for the month. One note we must make
in respect to our analysis within the month of January, is that the 2" of January is missing from
the dataset. All other months seem to contain all days for the month, while January does not.

II. Event Type by Month
The event type by month shows that November has the highest views on products,
followed by December, January, then October. However, December shows to have the highest
purchases and carts. We concluded that many users like to explore items during the holiday
season but start purchasing items right before Christmas.

R Fomm e m e R e +
| event_type|oct_count|nov_count |dec_count|jan_count]
R Fomm e m e R e +
| purchase| 742348 916939| 1162248| 835887
| view| 48779392 £355611@| E298GEET| 52498735
| cart| 92e51&| 3ez2893@| 33347e3| 2641249
e e Fome e a e m - T Fommm - +

25"

1
i3

I oct_count

. Gategery et entn
6 nov_count
E dec_count 20
. jan_count .
5
4 15
8 10
2
05
00 I I . | B _ l
0 e — 4 e 2 g 2] 8
0 S S S 2 o 5
2 s £
3
2
T

None
sport
Kids

B
5
2 € 2 g
: 5 ¢

furniture S,

medicine
accessores fm
construction

a
<
°

appl
country_yard

]

111, Category

When we move onto reviewing revenue by category code, we do see a few issues of
concern. For the months of October and November we see that the top one and two revenue
generating categories are electronics, which comes in between $175 million and $200 million;
the next category, being appliances, dropping back to roughly $15 million $2 million. This is a
large margin and we can speculate that this eCommerce business would focus their revenue in
the area of electronics, however, when we begin reviewing the top revenue generators for the
following months, December and January, we see a different trend. The top revenue generating
category is now construction, with a similar second place maintained by appliances. Appliances
contribute much more than the preceding two months, with an average of about $38 million as
compared to roughly $9 million for the months of October and November.

On these concerns, we can formulate two hypotheses: one, there was an adjustment to
how categories are prescribed in the months of December and January as opposed to the previous
months; two, the categories are defined in a more liquid way than is discernible through the data.
It may be possible that certain electronics fall into multiple categories and when a product is
purchased, it is the leading category from where the user searched that is then logged by the
database. For instance, if a product is categorized in both electronics and construction and if a
user finds and purchases the product through searching in the construction category, then that
purchase is logged as a construction purchase event even if the product is largely an electronic
device.

1V. Revenue & Brand per month

In looking at the top revenue generators for each month, we see that there is at least one,
sometimes two, products that lead in revenue generation by a large extent. For all four months
we see that Apple is the leading revenue generator. This comes in at an average of roughly $126
million in revenue. The next closest is Samsung at an average across all months of $61 million.

The top revenue generating category for December and January is then construction as
opposed to electronics for October and November. Where electronics comprised an average of
$187 million in October and November, construction makes up an average total of roughly $198
million. These numbers do not make sense when the top 5 leading revenue generating brands all
fall into the electronics category. It is feasible for the months of October and November, but
there is concern for December and January. In looking further into the graphs below, we can
further see the by-month revenue generation by Product ID and User ID. We note that although
our analysis would benefit by having a more descriptive product identification, the ID is all that
is available to us.

Here, we see that the products with ID’s equal to 1005115 and 1005105 lead each of the
four months in revenue generation. They comprise an average total revenue of $152 million and

$122 million, respectively. We then also see that there are three product ids that are consistently
in the top; these are 1004249, 1005135, and 1004767.

Finally, by looking at the user ID category that is available to us, we see that unlike the
other categories where there is consistently a top product or brand, the top users differ per month.
From the months of October to January, these are as follows: October, with 519267944,
513117637, 515384420; November, with 518514099, 512386086, 564068124; December, with
553431815, 569333570, 513901034; January, with 562104312, 515428951, 563599039. Within
this top three review, there are no User ID’s that carry over from month to month; however, it
may be worth reviewing these users on a yearly basis. Due to the fact that the revenue per user is
in the millions, it is more likely that these are business accounts and that there may be a per year
trend when reviewing the purchase patterns of certain businesses.

A By Month Review of Top Revenue Generating Categories
OCTOBER NOVEMBER

Revenue Per Product ID - Top 25 Revenue Per User - Top 25 Revenue Per Product ID - Top 25 Revenue Per User - Top 25

o® e o o
g o o o

Revenue

Revenue Per Category - Top 25

. & o o 1 o o o - o 3
o B i o e e A A
% 1 1 Revenue 1a?

Revenue 1e7
Revenue
Revenue Per Brand - Top 25

Revenue Per Brand - Top 25 Revenue Per Category - Top 25

apple.
samsung
-

Brand
Category

EL I R : T R a® ‘, CR'Y . N
Revenue =8 Revenue 128 Revenue 16 Revenue 128
DECEMBER JANUARY
Revenue Per Product ID - Top 25 Revenue Per User - Top 25

Revenue Per User - Top 25

Revenue Per Product ID - Top 25

o

Revenue -
Revenue

Revenue Per Brand - Top 25 Revenue Per Category - Tap 25

category
Brand
Categary

Arand

nedicine e
ok © @ LI B P o
o gt . o o o g

Revenue Revenue

Description:
The above graphs are intended to breakdown the overall revenue of each of the categorical values available to
us. These include Product ID, User ID, Brand, and Category by Month. These are visible in order from top left,
moving right, to bottom left, whereby the bottom most right contains the category revenue for January.

Challenges & Limitations
When we initially started this project, we decided to leverage the cluster computing that

spark is known for. This led us into setting up cluster computing on AWS. AWS utilizes EMR’’s,
which is their form of a managed cluster platform. Our team tried several iterations of EMRs on
the platform, where it was possible to initiate the EMR instance, however, it was not possible to
remote into the instance. This issue was not resolvable, which lead us to review additional
avenues for running spark. These EMR instances are noted below.

EMR Cluster Computing - Issue

Description:
Above, we see four examples of EMR instances. The two on the left failed to launch, while the instances on the
right had success in launching, although it was not possible to remote into these instances.

Following the EMR setup issues, we continued to use AWS, but resorted to using a single

EC2 instance. We ensured that there was an allocation of 32 GB of RAM to the system, an
essential component to spark; after successfully logging into the system, we did encounter
additional challenges within the EC instance and in using the spark framework. These are noted
as follows:

Importing large data files from the S3 bucket.

Adjusting the PySpark specific programming syntax.

Converting necessary values, like the timestamp and category values.

Learning how to leverage big data processing techniques.

Refining processing efficiency and runtime.

Al e

F DE B Dfles & -
L # Dfles

RERCUNN [P 20 304, Reinean SR A0 8 BISSALL wmcutid o S s, Reees 0 -B0 14 SR | eouted i T B fnated 1RST 0N QIO | et i 30 200, R0 212143 S0E00H-D
Description:
The runtime on large files became a challenge for us in that even minor changes to a query could amount in a

wall time of between 20 to 30 mins. Above we see this for four queries in the month of December.

Code Deployment
Spark — Initial Setup

In[1]: M from IPython.core.display import display, HTML

def jupyterwidthfunction():

hat width do you want?)

width=1in
display(HTHL le>.container { width:95% !important; }</style>™))

jupyterwidthfunction()
executed in 11ms, finished 06:32:18 2020-05-30

I [2]: M # source: https://ma. kaggle. com/fatmakursun/pyspark-nL-tutorial-for-beginners

import os

import pandas as pd
import numpy as np
import boto3

from IPython.display import display as disp

from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession, SQLContext
from pyspark.context import SparkContext

from pyspark import RDD, since, keyword_only

from pyspark.sql.types import *
import pyspark.sql.functions as F
from pyspark.sql.functions import udf, col

import seaborn as sns
import matplotlib.pyplot as plt
import time

from pyspark import SparkConf
from pyspark.sgl import SparkSession, SQLContext
| »

executed in 1.53s, finished 08:32:20 2020-05-30

10

In [3]:

In [4]:

M 1 from pyspark.sql import SQLContext
2 sc = SparkContext()
3 sqlContext = SQLContext{sc)

exacuted in 3.55s, finished 0§:22:23 2020-05-30

M 1 spark = SparkSession.builder.master("yarn").apphame("Myspp").getOrCreate()

2 spark.sparkContext._conf.getall()
executed in 588ms, finished 08:32:24 2020-05-30

Description:
Imported packages to use throughout the analysis. We started with the basic packages for pyspark and a few
visualization packages.

Spark - Descriptive Statistics

In [12]: M|~ 1 # Count columns ond see the names
2 | cols

z for 1
4 #pri

]

&f_oct.colums
(@)

E cols.append(1)

& cols - pd.Dataframe(cols)

& print("Total columns are: {}, \nictal records are

count columns and see the names
cols = []
12 for i in ¢f_nov.colums
#print (i)
cols.append(1)
cols = pd.DataFrame(cols)
records

17 print(*Total columns are: {}, \nTotal are

count columns and see the names
cols = []
for 1 in df_dec.columns
#print(i)
cols.append(1)
cols = pd.Datarrame(cols)
records

print("Total columns are: {}, \nTctal are

Count columns and see the names

int(i)
cols.append(i)
cols = pd.Datarrame(cols)

s print("Total columns are: {}, \nTotal records

35 are:
executed in Bm 365, finished 07.01:38 2020-05-30

\nThe column names ar

\nThe column names ar

\nThe column names are: \

\nThe column names are: \n{}"

.format(len(cols),df_oct.count(},

3. format(1en(cols),df_nov.count(),

3. format(1en(cols),df_dec.count(),

3. format(len(cols),df_jan.count(),

cols))

cols))

cols))

cols))

Description:
We started our initial analysis process by first evaluating and exploring the data structures. This later on
helped determine which variables needed changes in format.

In [19]:

]

Parsing Column Text with Delimiter

1 from pyspark.sgl.functions import split

split_col=split(df_oct['categary_code'], "\\.")
df_edt_oct = df_oct.withCelumn{'categery', split_cel.getItem(e)).drop(”
5 df_edt_oct.show(s)

7 split_col-split(df_nov['category_code'], "\\."}
& df_edt_nov = df_nov.withColumn{'categery', split_col.getItem(@)).drop("
9 df_edt_nov.show(5)

11 split_colosplit(df_dec[category_code’], "\\."
df_edt_dec = df_dec.withCelumn{'categery', split_cel.getItem(e)).drop(”
df_edt_dec.show(s)

15 split_col=split(df_jan['category_code'],
6 df_edt_jam = df_jan.withColumn('category', split col.getitem(e)}).drop("
7 df_edt_jan.show(s)

executzd in 831ms, finished 08:06:33 2020-05-20

")

category_code"

categery_code")

categery_code")

Description:

Category code had different categories
with subcategories within the same
column. The text was separated by a
delimiter. We used the parsed data to
group the categories to further analyze
the effects on consumer behavior for
each category.

)

11

Spark — Setting SQL Tables

SET SQL TABLE VIEWS

1 # Create a temporary table v
2 df oct. cr‘eateor‘ReplaceTEmp\«':leu("oct_table")

ble
5 J]
E£XECU120 N 97MS, NNIENEN 10:15:00 2 5

Create a temporary table view
df_nov.createCrReplaceTempView("nov_table™)

4 & creating Purchase
df_now.filter(" Purch. == 1'}.createorReplaceTempView('

executed In Sims, inished 10:15:01 2021

Cregte a temporary table view
df_dec.createCrReplaceTempView(“dec_table"™)

4| # cr ng Purchose table
df_dec. 'F.ther'(Purch
£xeculzd I 131ms, INIShed 19:42-45 20

Create a temporary table v

i df_jan.createorReplaceTempVi

“jan_table")

4 # creating Purchase toble
df_jan.filter(" Purch.
executzd In 55ms, finished 19:42:45 2021

== 1'}.createorReplaceTempView('oct_purchased

ov_purchased

1'}.createorReplaceTempview('dec_purchased

}.createorreplaceTempview(' jan_purchased

: Description:
Spark allows for the use of both python’s
object-oriented programming style as well
. the use of SOL queries. In order to use SQL,
we needed to set the table views. We set this
for all months for two main contingencies,
all data in all months, and for where the
) event type is equal to a purchase.
)

Breaking Down Timestamp Column

date_format.asp

import pyspark.sql.functions as sparkf
rom pyspark.sql.functions import col

5 from pyspark.sql.functions import from unixtime, date format, to dste

7 from pyspark.sql.functions import to_timestamp, unix_timestamp, hour, minute

5 from pyspark.sql.functions import split

def transfory
Conver
datafram

sColvalues (datafrane):

time' to a dato/time timestamp
2 rame . withColumn(

14 to_timestamp(dataframe =y "yyyy-Mi-dd Hizmm:ss”

dataframe = dataframe.withColumn(
_withColumn(" ey

t_totd’, date_format
t_date’, date_format('event

Creating nev

datefrome = da nt_time'], 'yyyy-Mi-dd*))\
hour (dataframe] ' 11y
", minute(dataframe[t_time']))

Create g integer type time col
datefreme = dataframe. w)th[ulumn(440h
(dataframe['event_hour'] * 60 + dataframe['

collect day of the week - week day
dataframe - dataframe.withColumn(' do

-withColumn(*dotm_num’,
.withColumn(woty_num’, date_format
datefreme = dataframe.withColunn('dotw num', dataframe[’
_withColumn(* dotm_nu datafreme[*dotm_nun®)
.withColumn(" woty_nu dataframe] “woty_num].cast("integer’))

extracti
#split_c
datafram

the primary category - setting the data types

dataframe. withColumn(prinary_cat’, dataframe[category code’]) \

.withColumn('primary_cat", split(dataframe[’ category cndé‘], "\\.").getItem(0))

datafrane = dataframe.nithColumn(’product_id', datafr‘ame[product_id']. cast

a ring’
a withColumn('category id', dataframe[category i

a4 # adding @ purchase column for predictions

as datoframe = dataframe.withColumn('PurchaseYll', (dataframe['event type']=='purchase’).cast('integer'))

a6 print(*Completed")
a7 return(dataframe)

Link to Presentation

.cast('string'))

Description:

A mainstay of our data is the timestamp data
type field. There is a timestamp for each event
that occurs in the data. We incorporated this
into our analysis by further breaking it down.

The main time oriented fields used included
‘day of the week’ as a number(1-7), the ‘day
of the week as a day’ (Mon-Sun), the ‘day of
the month’ (1-30/31), and the ‘week of the
year’ (1-52).

https://docs.google.com/presentation/d/10LSDaMFsIXUtIbYxLenwFW616bg 6mds/edit#slide=

1d.g861a51a686_1 0

12

https://docs.google.com/presentation/d/1OLSDaMFsIXUtIbYxLenwFW616bq_6mds/edit#slide=id.g861a51a686_1_0
https://docs.google.com/presentation/d/1OLSDaMFsIXUtIbYxLenwFW616bq_6mds/edit#slide=id.g861a51a686_1_0

	https://docs.google.com/presentation/d/1OLSDaMFsIXUtIbYxLenwFW616bq_6mds/edit#slide=id.g861a51a686_1_0

